什么是动态范围?维基百科定义,动态范围(Dynamic Range)是可变化信号(例如声音或光)最大值和最小值的比值。
图1:宽动态典型场景
如果把场景的亮度作为横坐标,图像传感器输出的数据作为纵坐标,我们就得到图2所示的传感器输出和场景的动态范围映射关系。图像传感器把一定亮度范围的场景采集并映射为自己的输出,如图中红框所示。
(相关资料图)
图2:场景到传感器的动态范围映射
从原理上讲,红框尺寸受限于传感器的像素势阱容量,受限于尺寸,很难简单做大,车用图像传感器的高动态范围技术是行业面临的共同挑战。过去二十年来,车载图像传感器的高动态范围大致有如下四大技术流派。
第一个是动态改变像素的灵敏度扩充动态范围。如图3所示,图像传感器对场景亮度的映射变成非线性,随着环境亮度增加,像素灵敏度逐渐下降,灵敏度从亮度的线性函数变成分段函数。如下图所示,电荷积累分成三段,亮度低时灵敏度高,对应黑色电荷,然后亮度中等灵敏度也中等,对应蓝色电荷,最后亮度最高灵敏度最低。从坐标图中可以看到,此时像素的势阱容量即纵坐标不增加,但映射的场景亮度范围即横坐标可以明显加大,实现了增大动态范围的目标。
安森美(onsemi)的车用图像传感器产品线早期推出过30万像素的可变灵敏度传感器,就是基于此类技术,这个技术的最大挑战在于它改变了像素的灵敏度特性,让线性特性的灵敏度变成非线性,而这个折线的形状对电压、温度和曝光时长敏感,一致性差,动态范围扩展能力有限,只能勉强用于大尺寸像素黑白图像的传感器。目前这类技术已经逐渐被市场淘汰。
图3:非线性化扩充动态范围
第二个高动态范围技术是时分多次曝光,这个是目前主流车用图像传感器所采用的技术。做法就是图像传感器改变曝光时间连续多次曝光得到多帧图像,然后从中选择合适像素合并成一帧图像。如图4示意,传感器改变曝光时间,相当于自带自动曝光功能,对场景不同亮度分别采样,得到多个红框,然后把动态范围拼接起来。这个技术的优点在于:像素势阱容量不用额外做大,只需把数据带宽做大;每个曝光的时长控制可以很精确,最终拟合的图像亮度线性特性好;动态范围扩展容易,仅用时分技术就能做到140dB的动态范围。
时分多次曝光技术有一个难以克服的问题,由于传感器的连续曝光时间上是依次滞后的,当场景中有快速移动物体或光照剧烈变化例如LED频闪情况下,多帧图像拟合后会出现运动物体伪影和色彩噪声。ADAS算法需要针对性地训练这类噪声。
图4:多帧合并扩充动态范围
空分多次曝光,业内也有称之为大小像素技术。本质来说与时分多次曝光类似,由多帧融合,区别在于图4中的多个红框来源于空间尺寸上不同的两种像素,两种像素的图像拟合成为一张图像。由于两种像素在曝光时间上是对齐的,可以避免了运动重影的问题,同时改善LED灯频闪现象。
不过有得就有失:空分曝光,意味着像素数量翻倍, 例如1百万像素传感器实际上是1百万大像素加1百万小像素,增加了功耗和设计复杂度;小像素挤占了大像素的面积,降低了大像素的低照性能;大小像素的灵敏度差异大,线性特性差,小像素在光学上无法和大像素兼容,需要大量的光学标定工作以补偿小像素的问题。这些都是用户在产品应用开发中需要解决的工程挑战,此外,大小像素图像传感器受小像素尺寸限制,随着技术演进会逐渐变成瓶颈,所以安森美在2009年就发明并申请了大小像素技术的专利,但并没有推出相应的传感器产品。
第四个高动态范围技术就是直接扩展像素的势阱容量。传统图像传感器像素的感光二极管在感光的同时兼具电荷存储的功能,因此像素的电荷势阱容量受限于感光二极管尺寸。随着像素尺寸越来越小,像素的容量也逐渐变小。安森美的超级曝光像素技术突破了这一限制,并在业内率先量产了基于这一技术的产品。技术路径就是为感光二极管外挂了存储电容,当容量饱和时,多余的电荷会被转移到电容中存储起来。这里的电容不参与光学感光,但扩充了像素的势阱容量。如图5示意,上面的小桶相当于感光二极管,下面的大桶相当于存储电容。大桶不直接接水,只存储小桶溢出的水。
图5:感知和存储分离
为了支持足够高的动态范围,业内产品通常会复用上述三种技术。一张高动态范围的图像,可能是时分多次曝光帧、大小像素帧和超级曝光帧的复合拟合结果。这有点像汽车动力中的插混方案,动力可能来自自排发动机,涡轮增压,以及电机直驱的并联。这里多帧拟合的线性特性很像汽车驾驶动力变化的线性特性,保证输出的平顺与线性是高动态范围图像的巨大挑战。一般来说,技术种类越少,线性特性越好。
关键词:
广州南站快速通道新进展:东晓南南段二标跨南大干线钢箱梁顺利吊装 广州日报客户端
烟台:以“绣花功夫”擘画幸福新图景 闪电新闻
相约谷雨共赴花期 邢台市第一幼儿园开展谷雨节气主题活动 天天播报 燕赵都市报纵览新闻